Objects of class ldmppr_fit are returned by estimate_process_parameters.
They contain the best-fitting optimization result (and optionally multiple fits,
e.g. from a delta search) along with metadata used to reproduce the fit.
Usage
# S3 method for class 'ldmppr_fit'
print(x, ...)
# S3 method for class 'ldmppr_fit'
coef(object, ...)
# S3 method for class 'ldmppr_fit'
logLik(object, ...)
# S3 method for class 'ldmppr_fit'
summary(object, ...)
# S3 method for class 'summary.ldmppr_fit'
print(x, ...)
# S3 method for class 'ldmppr_fit'
plot(x, ...)
as_nloptr(x, ...)
# S3 method for class 'ldmppr_fit'
as_nloptr(x, ...)Details
A ldmppr_fit is a list with (at minimum):
process: process name (e.g."self_correcting")fit: best optimization result (currently annloptrobject)mapping: mapping information (e.g. chosendelta, objectives)grid: grid definitions used by likelihood approximation
Methods (by generic)
print(ldmppr_fit): Print a brief summary of a fitted model.coef(ldmppr_fit): Extract the estimated parameter vector.logLik(ldmppr_fit): Log-likelihood at the optimum.summary(ldmppr_fit): Summarize a fitted model.plot(ldmppr_fit): Plot diagnostics for a fitted model.as_nloptr(ldmppr_fit): Extract the underlyingnloptrresult.