Skip to contents

Objects of class ldmppr_fit are returned by estimate_process_parameters. They contain the best-fitting optimization result (and optionally multiple fits, e.g. from a delta search) along with metadata used to reproduce the fit.

Usage

# S3 method for class 'ldmppr_fit'
print(x, ...)

# S3 method for class 'ldmppr_fit'
coef(object, ...)

# S3 method for class 'ldmppr_fit'
logLik(object, ...)

# S3 method for class 'ldmppr_fit'
summary(object, ...)

# S3 method for class 'summary.ldmppr_fit'
print(x, ...)

# S3 method for class 'ldmppr_fit'
plot(x, ...)

as_nloptr(x, ...)

# S3 method for class 'ldmppr_fit'
as_nloptr(x, ...)

Arguments

x

an object of class ldmppr_fit.

...

additional arguments (not used).

object

an object of class ldmppr_fit.

Value

print()

prints a brief summary of the fit.

coef()

returns the estimated parameter vector.

logLik()

returns the log-likelihood at the optimum.

summary()

returns a summary.ldmppr_fit.

plot()

plots diagnostics for multi-fit runs, if available.

Details

A ldmppr_fit is a list with (at minimum):

  • process: process name (e.g. "self_correcting")

  • fit: best optimization result (currently an nloptr object)

  • mapping: mapping information (e.g. chosen delta, objectives)

  • grid: grid definitions used by likelihood approximation

Methods (by generic)

  • print(ldmppr_fit): Print a brief summary of a fitted model.

  • coef(ldmppr_fit): Extract the estimated parameter vector.

  • logLik(ldmppr_fit): Log-likelihood at the optimum.

  • summary(ldmppr_fit): Summarize a fitted model.

  • plot(ldmppr_fit): Plot diagnostics for a fitted model.

  • as_nloptr(ldmppr_fit): Extract the underlying nloptr result.

Functions

  • print(summary.ldmppr_fit): Print a summary produced by summary.ldmppr_fit.

  • as_nloptr(): Extract the underlying nloptr result.