Package index
-
check_model_fit() - Check the fit of an estimated model using global envelope tests
-
estimate_process_parameters() - Estimate point process parameters using log-likelihood maximization
-
extract_covars() - Extract covariate values from a set of rasters
-
generate_mpp() - Generate a marked process given locations and marks
-
print(<ldmppr_fit>)coef(<ldmppr_fit>)logLik(<ldmppr_fit>)summary(<ldmppr_fit>)print(<summary.ldmppr_fit>)plot(<ldmppr_fit>)as_nloptr() - Fitted point-process model object
-
ldmppr_mark_model()print(<ldmppr_mark_model>)predict.ldmppr_mark_model()save_mark_model()load_mark_model() - Mark model object
-
print(<ldmppr_model_check>)summary(<ldmppr_model_check>)print(<summary.ldmppr_model_check>)plot(<ldmppr_model_check>) - Model fit diagnostic object
-
print(<ldmppr_sim>)as.data.frame(<ldmppr_sim>)nobs(<ldmppr_sim>)plot(<ldmppr_sim>)mpp.ldmppr_sim() - Simulated marked point process object
-
medium_example_data - Medium Example Data
-
plot_mpp() - Plot a marked point process
-
power_law_mapping() - Gentle decay (power-law) mapping function from sizes to arrival times
-
predict_marks() - Predict values from the mark distribution
-
scale_rasters() - Scale a set of rasters
-
simulate_mpp() - Simulate a realization of a location dependent marked point process
-
simulate_sc() - Simulate from the self-correcting model
-
small_example_data - Small Example Data
-
train_mark_model() - Train a flexible model for the mark distribution