Skip to contents

All functions

check_model_fit()
Check the fit of an estimated model using global envelope tests
estimate_process_parameters()
Estimate point process parameters using log-likelihood maximization
extract_covars()
Extract covariate values from a set of rasters
generate_mpp()
Generate a marked process given locations and marks
print(<ldmppr_fit>) coef(<ldmppr_fit>) logLik(<ldmppr_fit>) summary(<ldmppr_fit>) print(<summary.ldmppr_fit>) plot(<ldmppr_fit>) as_nloptr()
Fitted point-process model object
ldmppr_mark_model() print(<ldmppr_mark_model>) predict.ldmppr_mark_model() save_mark_model() load_mark_model()
Mark model object
print(<ldmppr_model_check>) summary(<ldmppr_model_check>) print(<summary.ldmppr_model_check>) plot(<ldmppr_model_check>)
Model fit diagnostic object
print(<ldmppr_sim>) as.data.frame(<ldmppr_sim>) nobs(<ldmppr_sim>) plot(<ldmppr_sim>) mpp.ldmppr_sim()
Simulated marked point process object
medium_example_data
Medium Example Data
plot_mpp()
Plot a marked point process
power_law_mapping()
Gentle decay (power-law) mapping function from sizes to arrival times
predict_marks()
Predict values from the mark distribution
scale_rasters()
Scale a set of rasters
simulate_mpp()
Simulate a realization of a location dependent marked point process
simulate_sc()
Simulate from the self-correcting model
small_example_data
Small Example Data
train_mark_model()
Train a flexible model for the mark distribution